############################# Script for making simulations ############################# Simulations ----------- :: %Simulation of generic function (e.g. peaks) and S(Q,w) models %========= S(Q,w) model simulations ======================== %simulate on sqw objects using S(Q,w) model for the physics %Use sqw_eval for S(Q,w) models sim_slice=sqw_eval(my_slice,@my_sqw_model,[1,2,3,4]); sim_slice_dnd=sqw_eval(d2d(my_slice),@my_sqw_model,[1,2,3,4]); %Here my_slice is an sqw object. We have a Matlab function on our path called my_sqw_model.m, and there are %some parameters associated with this model, [1,2,3,4]. % %The form (1st line) of my_sqw_model.m should be: % function weight=my_sqw_model(h,k,l,e,pars) % the pars are the vector of input parameters we used above % % An example of an S(Q,w) model is given in the Horace "functions" directory, in the Matlab m-file % "demo_FM_spinwaves_2dSlice_sqw.m %Simulating a dnd and an sqw that are notionally the same gives different results, since for the sqw all of the contributing %detector pixels are simulated and then re-summed, whereas for the dnd just single points at the centre of bins are used %So if the intensity varies across a bin the dnd simulation will not capture this %========== Generic function simulation ================== %Use func_eval for generic functions peak_cut=func_eval(my_cut,@mgauss,[1,-1,0.1,2,0,0.1,1,1,0.1]); %Here the function mgauss is included in the Horace distribution (in the functions directory). It only works on 1-dimensional cuts, and simulates multiple %gaussians. The syntax is the same as for the sqw_eval function, so the vector argument is a list of input parameters for the function %In the case of mgauss, they are [amplitude1, centre1, width1, amplitude2, centre2, width2, ...., amplitudeM, centreM, widthM] %for M gaussians Plotting dispersion ------------------- :: alatt=[2.87,2.87,2.87]; angdeg=[90,90,90]; lattice=[alatt,angdeg]; rlp=[0,0,0; 1/2,0,0; 1/2,1/2,0; 1/2,1/2,1/2; 0,0,0; 0,0,1/2;]; pars=[1,2,3,4,5]; ecent=[0,0.1,10]; fwhh=0.1; disp2sqw_plot(lattice,rlp,@my_dispersion_function,pars,ecent,fwhh); %The dispersion function has different (but similar) form to cross section functions % % The inputs are h,k,l and parameters; the outputs are the energy (i.e. dispersion) and spectral weight at that point %Here is an example dispersion function function [wdisp1,s_yy]=sr122_disp(qh,qk,ql,p) % % SrFe2As2 cross-section, from Tobyfit % % Spin waves for FeAs, from Ewings et al., PRB 78 % Lattice parameters as for orthorhombic lattice i.e. a ~= b ~5.6Ang % % \tp(1)\tS_eff % \tp(2)\tSK_ab % \tp(3)\tSK_c % % If ircoss=201: % \tp(4)\tSJ_1a % \tp(5)\tSJ_1b % \tp(6)\tSJ_2 % % If icross=202 % \tp(4)\tS(2J2+J_1a) % \tp(5)\tS(2J2-J_1b) % \tp(6)\tSJ1a-SJ1b % % \tp(7)\tSJ_c % \tp(8)\tinverse lifetime gamma (= energy half-width) % \tp(19)\t0 if S(Q,w) as theory, =1 if multiply S(Q,w) by energy transfer % \tp(20)\t0 if twinned; 1 if twin #1 ; -1 if twin #2 % If icross=207 % As cross-section 204, but deal with J1a, J1b, J2 directly. s_eff = p(1); sj_1a = p(4); sj_1b = p(5); sj_2 = p(6); sj_c = p(7); sjplus = sj_1a+(2.sj_2); sjminus = (2.sj_2)-sj_1b; sk_ab = 0.5.(sqrt((sjplus+sj_c).^2 + 10.5625) - (sjplus+sj_c)); sk_c = sk_ab; gam = p(8); temp=4; alatt=[5.57,5.51,12.298]; arlu=2pi./alatt; qsqr = (qh*arlu(1)).^2 + (qk*arlu(2)).^2 + (qlarlu(3)).^2; weight=zeros(size(qh)); %First twin: a_q = 2.*( sj_1b.*(cos(pi.*qk)-1) + sj_1a + 2.*sj_2 + sj_c ) + (3.sk_ab+sk_c); d_q = 2.*( sj_1a.*cos(pi.*qh) + 2.*sj_2.*cos(pi.*qh).*cos(pi.*qk) + sj_c.*cos(pi.*ql) ); c_anis = sk_ab-sk_c; wdisp1 = sqrt(abs(a_q.^2-(d_q+c_anis).^2)); %wdisp2 = sqrt(abs(a_q.^2-(d_q-c_anis).^2)); s_yy = s_eff.((a_q-d_q-c_anis)./wdisp1);